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T
he validity of any occupational epidemiology study is determined by the extent of systematic

error (bias) that is avoided or minimised.1 Systematic error (bias) can be distinguished from

random error because the latter can be reduced by increasing the size of a study, whereas bias

can only be reduced by changing the study design. In this paper, we provide an overview of those

aspects of bias that are particularly important in occupational epidemiology. There are many different

types of bias, but three general forms are commonly distinguished: selection bias, information bias

and confounding.

SELECTION BIASc
In any occupational epidemiology study, the first practical task is to select the study participants from

the source population. Selection bias involves biases arising from the procedures by which the study

participants are selected from this source population, or select themselves by agreeing to participate.

Thus, selection bias is not an issue in a cohort study involving complete recruitment and follow-up

because in this instance the study cohort comprises the entire source population (bias may still occur

because exposure has not been randomly assigned, but this involves confounding rather than

selection bias1). However, selection bias can occur if participation in the study or follow-up is

incomplete. For example, in a cohort mortality study, if a national population registry (or some

surrogate such as a voter registration list) were not available, then it might be necessary to attempt to

contact each worker or his next-of-kin to verify vital status. Bias could occur if the response rate was

related both to exposure and disease—for example, if it were higher in heavily exposed diseased

people than in others (with low exposure and/or without disease).

Although we should recognise the possible biases arising from subject selection, it is important to

note that epidemiological studies need not be based on representative samples to avoid bias. For

example, in a cohort study, people who developed (non-fatal) disease might be more likely to be lost

to follow-up than those who did not develop disease; however, this would not affect the relative risk

estimate provided that loss to follow-up applied equally to the exposed and non-exposed

populations.2 On the other hand, case-control studies have differing selection probabilities of cases

and non-cases as an integral aspect of their design. The general principle that applies to all study

designs is that selection bias will only occur when the selection probabilities are related both to

exposure and health outcome.

ASSESSMENT AND CONTROL OF SELECTION BIAS
Selection bias can sometimes be assessed and/or controlled in the analysis by identifying factors

which are related to subject selection and controlling for them as confounders. For example, if white-

collar workers are more likely to be selected for (or participate in) a study than manual workers (and

white-collar work is negatively or positively related to the exposure and outcomes of interest), then

this bias can be partially controlled by collecting information on social class and controlling for social

class in the analysis as a confounder.

INFORMATION BIAS
Information bias is the result of misclassification of study participants with respect to disease or

exposure status. Thus, the concept of information bias refers to those people actually included in the

study, whereas selection bias refers to the selection of the study participants from the source

population, and confounding (see below) generally refers to non-comparability of subgroups within

the source population.3

Abbreviations: MWF, metal working fluids; SMR, standardised mortality ratio
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It is customary to consider two types of misclassification:

non-differential and differential. The effects of each will be

discussed in turn. An in-depth examination of the conse-

quences of exposure misclassification, and methods to mini-

mize or correct for misclassification bias, can be found in the

text by Armstrong et al.4 More technical issues of statistical

corrections are covered by Carroll et al.5

NON-DIFFERENTIAL MISCLASSIFICATION
Non-differential misclassification of exposure occurs when the

probability of exposure misclassification is not related to

disease status—that is, if diseased and non-diseased people

are equally likely to be misclassified according to exposure.

Similarly, misclassification of disease status is non-differential

if exposed and non-exposed people are equally likely to be

misclassified according to disease status. Non-differential

misclassification usually, although not always, biases ratio

measures of association like the relative risk towards the null

value of 1.0.6–8 Hence, non-differential information bias tends to

produce ‘‘false negative’’ findings and is of particular concern

in studies which find a negligible association between exposure

and disease.

Non-differential misclassification will also produce bias

towards the null value when exposure is measured as a

continuous variable. In this situation, it will produce ‘‘attenua-

tion’’ of the dose-response slope so that the regression

coefficient is biased towards the null value of zero.9

In practice, it is seldom possible to determine the extent of

misclassification because ‘‘gold standards’’ are rarely available.

Nonetheless, the extent of misclassification may be estimated

by smaller-scale validation studies, ideally in a subgroup of the

population under study. It can also be inferred from prior

knowledge, as the following example illustrates. In their study

of cardiovascular disease mortality among British Columbia

lumber mill workers, Davies et al10 observed a dose-response

gradient of acute myocardial infarction with noise exposure

that was especially accentuated among workers hired before

hearing protection was commonly applied (table 1). The weaker

trend for the entire cohort was likely due to non-differential

misclassification of noise exposure among members of the

entire cohort whose exposures were overestimated by failure to

take into account hearing protection. More generally, such

misclassification occurs not only as a result of failure to take

into account specific exposure circumstances (for example, the

use of hearing protection), but also because of random

variation of exposures over time and space even when the

exposure circumstances remain unchanged; such variability is

usually greater than the relatively small variability that occurs

due to laboratory or sampling errors.1

There are some important caveats to the generalisation that

non-differential misclassification produces a bias towards the

null. When the specificity of the method of identifying the

disease under study is 100%, but the sensitivity (the proportion

of true cases that are correctly classified) is less than 100%, then

the risk difference will be biased towards the null, but the risk

ratio (or rate ratio) will be unbiased.11 The direction of bias may

also be influenced by the manner in which the exposure is

expressed. Bias toward the null can be expected when the

exposure variable is classified as exposed or non-exposed.

However, when exposures are classified in ordered categories

(for example, none, low, high), non-differential misclassifica-

tion between categories can produce a bias either toward or

away from the null, and the bias can be especially pronounced

when misclassification occurs between non-adjacent cate-

gories.8 Furthermore, non-differential misclassification of a

positive confounder can produce a bias away from the null,

because the confounding will be inadequately controlled.

Another assumption required for the bias toward the null is

that exposure misclassification is independent of disease

misclassification.12 13 A lack of independence between non-

differential misclassification of exposure and non-differential

misclassification of disease might, for example, occur in a cross-

sectional study where both exposure and health status are

based on subjects’ perceptions of exposure and disease

symptoms. For example, Kristensen13 gives the example of a

survey of pesticide application in a potato field and self-

reported health complaints which reported a clear association

(OR 2.42, 95% CI 1.93 to 3.02) between intensity of odour and

several (.3) health complaints, whereas a more objective

exposure index (proximity zone) showed a weak negative

association. One possible explanation was that the increased

odds ratio was due to non-differential but non-independent

misclassification caused by intersubject variation in threshold

levels of perception of both odour and health complaints.

Even when none of these exceptions to the bias toward the

null principle holds, and one can show mathematically that the

direction of bias from exposure misclassification should be

towards the null, it may still be true that in an actual study,

chance has conspired to move the effect estimate away from the

null. Thus, the direction of error from misclassification can

never be known with certainty; the most that can be said is that

a result is probably underestimated because of exposure

misclassification;14 this is what is meant by ‘‘bias towards the

null’’.

Table 1 Association of deaths resulting from acute myocardial infarction and cumulative
noise exposure

Cumulative
exposure (dB(A)-
year)

Full cohort (n = 27464) Subgroup without hearing protection (n = 8668)

Person-years Deaths SMR (95% CI) Person-years Deaths SMR (95% CI)

,100 314128 226 1.0 (0.9 to 1.1) 133556 174 1.0 (0.9 to 1.2)
100–104 155837 228 1.0 (0.9 to 1.2) 58940 136 1.0 (0.9 to 1.2)
105–109 116303 231 1.1 (1.0 to 1.2) 37133 120 1.2 (1.0 to 1.5)
110–114 63998 165 1.0 (0.9 to 1.2) 14646 71 1.3 (1.0 to 1.6)
115+ 18479 60 1.1 (0.8 to 1.4) 3071 19 1.3 (0.8 to 2.1)

Source: Davies et al.10
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DIFFERENTIAL MISCLASSIFICATION
Differential misclassification occurs when the probability of

misclassification of exposure is different in diseased and non-

diseased people, or the probability of misclassification of

disease is different in exposed and non-exposed people. This

can bias the observed effect estimate either towards or away

from the null value. For example, in a community-based case-

control study of cancer, with a control group selected from

among community residents free of cancer, the recall of

occupational history and related exposures of controls might

be different from that of the cases. Cases (or proxy respon-

dents) might have particular motivations to report specific

exposures, particularly if they had prior knowledge of presumed

causal associations (for example, asbestos as a well-known

cause of lung cancer). In this situation, differential information

bias would occur, and it could bias the relative risk estimate

(odds ratio) towards or away from the null, depending on

whether members of the community who did not develop lung

cancer were more or less likely to recall such exposure than the

cases.

An example of differential misclassification of exposure is

provided by a community-based study in Norway of respiratory

symptoms and asthma in relation to occupational exposures to

gases and dusts.15 Exposures were determined by self-report,

but exposure categorisation was also obtained with a structured

work history interview. The latter was regarded as the gold

standard. The sensitivity of the self-reported data for quartz

exposure varied from 21% to 64% and was higher in those with

than in those without the respiratory disorders (table 2). The

odds ratios for quartz exposure and respiratory symptoms were

approximately halved when the ‘‘gold standard’’ structured

interview exposure data were used instead of the data from

self-report: for example, the odds ratio for asthma fell from 1.98

to 1.45.

It has also been shown that categorisation of a continuous

exposure variable measured with non-differential error can

introduce differential misclassification.16 This occurs because

misclassification is not likely to be uniform within a category,

but rather will be greater at the category boundaries. When

there is a positive (or negative) association between exposure

and disease, categorisation of a continuous exposure variable

can introduce a differential misclassification because, within a

category, cases are more likely than non-cases to be at the

upper (or lower) end of exposure boundaries. In other words,

the resulting exposure misclassification from categorisation will

differ according to health status.

ASSESSMENT AND CONTROL OF
MISCLASSIFICATION
The true extent of misclassification bias of exposure or disease

can never be known in any one study. We might be tempted to

assume that misclassifications of exposure and health outcome

are both non-differential and independent of each other,

although there is often no empirical evidence to assess this

assumption. Thus, every effort should be made during the

conduct and implementation of a study to ensure that these

assumptions are supportable. Obvious examples are to ensure

that the exposure assessment is performed without the

assessors having knowledge (‘‘blinded’’) of health status,

conducting health examinations blinded to exposure status,

and keeping study interviewers unaware of the research

hypotheses.

Statistical methods to adjust for misclassification have been

described.4 7 17–19 These require estimates of sensitivity and

specificity, or the reliability of the measurement (incorporating

not only the reliability of the laboratory measurements, but also

the random variation of the exposure itself in space and time),

based on prior knowledge. These estimates are, however, often

just guesses. For this reason, we do not advocate reporting

‘‘misclassification-adjusted’’ effect estimates, although it is an

informative exercise to conduct sensitivity analyses that explore

the range of results that might have occurred under various

scenarios.20

If misclassification cannot be avoided, or controlled in the

analysis, it is important to at least assess its possible magnitude.

Obtaining additional exposure or health data to investigate

misclassification may be done for a sample of the study

population when resources are limited. The effort will be

justified when additional data can corroborate information

already in hand—the best situation is when the observed data

can be contrasted against a ‘‘gold standard’’ to establish

sensitivity and specificity.

CONFOUNDING
Confounding occurs when the exposed and non-exposed

subpopulations of the source population have different back-

ground disease risks.21 It can be thought of as a mixing of the

effects of the exposure being studied with the effects of other

factors (confounders) on risk of the health outcome interest. A

confounder, if not adequately controlled in the study design or

analysis, may bias the exposure-disease association, making it

either closer or farther from the null than the true effect.

Confounding may even reverse the apparent direction of an

effect in extreme situations.

Table 2 Self-reported and interview-based occupational
quartz exposure in those with and without respiratory
symptoms in a Norwegian general population study,
1987–8

Symptom

Quartz exposure

Self-reported
Interview
based Sensitivity Specificity

Morning cough
Yes (n = 180) 9.4% 12.2% 59.1% 98.6%
No (n = 534) 2.1% 7.5% 21.0% 99.4%

Chronic cough
Yes (n = 92) 10.9% 12.0% 63.6% 97.4%
No (n = 622) 2.9% 8.2% 27.5% 99.5%

Phlegm when
coughing

Yes (n = 179) 8.4% 12.3% 45.5% 96.4%
No (n = 535) 2.4% 7.0% 27.5% 98.3%

Breathlessness grade 2
Yes (n = 94) 9.6% 14.9% 50.0% 95.5%
No (n = 620) 3.1% 7.7% 29.2% 98.3%

Wheezing
Yes (n = 196) 8.2% 13.3% 50.0% 96.0%
No (n = 518) 2.3% 6.9% 22.2% 99.6%

Asthma
Yes (n = 88) 8.1% 18.0% 62.9% 98.0%
No (n = 626) 2.2% 7.2% 21.0% 100.0%

Source: Bakke et al.15
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Three conditions are traditionally given as necessary (but not

sufficient) for a factor to be a confounder.20 First, a confounder

is a factor that is predictive of disease in the absence of the

exposure under study. Note that a confounder need not be a

genuine cause of the disease under study, but merely

‘‘predictive.’’ Hence, surrogates for causal factors (for example,

age, socioeconomic status) may be regarded as potential

confounders, even though they are not direct causal factors

(usually the correlation is not 100% so control for a surrogate

for a causal factor will at best only partially control for

confounding).

Second, a confounder must be associated with exposure in

the source population at the start of follow-up (that is, at

baseline). In case-control studies this implies that a confounder

will tend to be associated with exposure among the controls. An

association may also occur among the cases simply because the

study factor and a potential confounder are both risk factors for

the disease, but this does not cause confounding in itself unless

the association also exists in the source population.

Third, a variable that is affected by the exposure—that is, an

intermediate in the causal pathway between exposure and

disease, should not be treated as a confounder because to do so

could introduce serious bias into the results.22–26 For example, in

a study of colon cancer among clerical workers, it would be

inappropriate to control for low physical activity if it was

considered that reduced physical activity was a consequence of

being a clerical worker, and hence a part of the causal chain

leading from clerical work to colon cancer. On the other hand, if

low physical activity itself was of primary interest, then this

should be studied directly, and clerical work would be regarded

as a potential confounder if it also involved exposure to other

risk factors for colon cancer (if not, then clerical work would

merely be a surrogate for low physical activity). Similarly, we

should avoid controlling for health outcomes that may be part

of the pathogenic disease process, such as reduced pulmonary

function following exposure to a respiratory hazard in a study

of chronic obstructive lung disease. (We would, however, be

justified in controlling for baseline—that is, pre-exposure—

lung function if there were reason to believe that baseline lung

function was associated with subsequent exposure level.)

Evaluating whether certain factors are exposure or health

outcome intermediates in causal pathways requires information

external to the study.

Selection bias and confounding are not always clearly

demarcated. In particular, selection bias in the form of non-

response at baseline of a cohort can be viewed as a source of

confounding, because it generates bias by producing associa-

tions of exposure with other risk factors in the study cohort. A

similar phenomenon occurs in case-control studies when

selection is affected by a factor that itself affects exposure. An

example occurs when matching on a factor that is associated

with exposure in the source population, but is not an

independent risk factor for disease. In this situation, the factor

is not a confounder in the source population, but matching may

turn it into a confounder which must be controlled in the data

analysis.20

THE HEALTHY WORKER EFFECT
The healthy worker effect is perhaps the most common

example of confounding in occupational studies. This phenom-

enon is characterised typically by lower relative mortality from

all causes combined, and from selected causes (for example,

cardiovascular disease), in an occupational cohort,27 28 and

occurs because relatively healthy individuals are likely to gain

employment and to remain employed.

Selection occurs at two time points:29 30 selection into the

workforce at time of hire (which is influenced by good health);

and selection out of the workforce at time of termination of

employment (if this is influenced by poor health). The initial

selection occurs at time of hire in that relatively healthy people

are more likely to seek and to be offered employment; the most

direct way to achieve partial control for this phenomenon is to

stratify on initial employment status—that is, to compare the

mortality of a particular workforce with that of other employed

people rather than with a general population sample (which

includes invalids and the unemployed).

The second key aspect of the healthy worker effect is the

selection of unhealthy people out of the workforce. Thus, the

most unhealthy members of a cohort are likely to have the

shortest employment duration. Steenland and Stayner31 exam-

ined employment status as a potential confounder by analysing

10 large cohort studies and classifying the person-years at risk

as ‘‘active’’ or ‘‘non-active’’. They found that total mortality was

relatively low during active employment and high during

inactive person-years before age 65 (the typical retirement age),

but was not increased during inactive person-years following

retirement. Overall, there was a negative dose-response

gradient with duration of employment, but this pattern

virtually disappeared when the active and inactive person-

years were analysed separately. Thus, employment status may

be a confounder, because it is a risk factor for death (either

because a change in employment status may signify ill-health,

or because being unemployed increases the risk of death), and

it is associated with exposure (if we are studying an exposure

that only occurs in those who are employed).

Finally, the strength of the healthy worker effect tends to

diminish with increasing time since first employment; this

problem can be addressed by stratifying on length of follow-

up.30

Thus, there are at least three aspects of the healthy worker

effect:1 (1) the selection of healthy people into employment

(sometimes called the healthy worker selection effect or healthy

hire effect), which can be controlled by making an internal

comparison rather than a comparison with national mortality

rates; (2) the selection of unhealthy people out of the workforce

(sometimes called the healthy worker survivor effect), which

can in part be controlled by controlling for (time-related)

employment status; and (3) the length of time the population

has been followed, which can be addressed by controlling for

length of follow-up.29

It should be stressed, however, that adjustment for factors

such as employment status or length of follow-up may

minimise confounding due to the healthy worker effect, but

may not eliminate more complex biases associated with it. In

particular, Robins32 has shown that bias may occur if risk

factors for disease are also determinants of employment status

(and hence of subsequent exposure). For example, if smokers

terminate employment early (perhaps due to smoking exacer-

bating the effects of occupational exposures on disease

symptoms, for example respiratory tract irritation), then
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smokers who have increased disease risks as a result of

smoking will have lower cumulative exposures than non-

smokers. More generally, when a confounding factor (such as

termination of employment) determines subsequent exposure

and is determined by previous exposure, then standard analyses

which estimate disease incidence as a function of cumulative

exposure may not validly estimate the true exposure effect,

even when adjustment is made for the confounder. However,

the likelihood of such biases occurring is seldom clear, and

adjustment for factors such as employment status may still be

warranted even if it will not completely eliminate bias.

Epidemiological studies of workplace risks of non-fatal

outcomes (morbidity), such as asthma or musculoskeletal

disorders, are especially prone to bias through aspects of the

healthy worker effect. The tendencies for sick workers to leave

employment or transfer to less-exposed jobs are two very

commonly observed phenomena in occupational morbidity

studies.33 Disorders that involve acute pain or other symptoms

will often result in a transfer to a less hazardous job, either by

the affected worker’s choice or by the employer.

Cross-sectional studies are particularly prone to bias from the

healthy worker effect. When quantifying the prevalent cases of

disease in a workplace, one may underestimate the effects of

exposure, if it leads not only to disease but also to leaving

employment. The bias may also occur if, instead of terminating

employment, those injured by exposure transfer into lower

exposure areas. For example, Eisen et al34 reported on a cross-

sectional study of the prevalence of self-reported asthma in a

cohort of US automobile workers exposed to metal working

fluids (MWF) while engaged in grinding operations. There was

a remarkably consistent negative exposure-response trend in

which the prevalence of asthma decreased with increasing

MWF exposure. At the highest exposure level, reported asthma

was only about 25% of the prevalence in the non-exposed. The

investigators suspected that a healthy worker transfer bias

might have occurred. They attempted to correct partially for this

by associating asthma cases with the types of MWF to which

cases were exposed in the two years before the time that the

participant reported the onset of asthma symptoms. When

these ‘‘pseudo-incidence’’ data were analysed using a Cox

proportional hazards model, exposure to MWF was no longer

associated with a deficit in asthma.

CONTROL AND ASSESSMENT OF CONFOUNDING
Confounding can be controlled in the study design, in the

analysis, or both. Control at the design stage is accomplished

with two main methods.20 The first is to restrict the study to

narrow ranges of values of the potential confounders—for

example, by restricting the study to white males aged 35–54.

This approach has a number of conceptual and computational

advantages, but may severely restrict the number of potential

study subjects and ultimately limit the informativeness of the

study. A second method of control involves matching study

subjects on potential confounders. For example, in a cohort

study one would match a white male non-exposed subject aged

35–39 with an exposed white male aged 35–39. This will

prevent age-sex-race confounding in a cohort study, but is often

expensive and time-consuming. In case-control studies, match-

ing does not prevent confounding, but does facilitate its control

in the analysis, although matching may actually reduce

precision if it is done on a factor which is associated with

exposure but is not a risk factor for the disease of interest.20

Confounding can also be controlled in the analysis using the

standard methods such as logistic regression for case-control

studies, and Poisson regression for cohort studies.1 The

assessment of confounding involves the use of prior knowledge

about the potential confounder, together with an assessment of

the extent to which the effect estimate changes when the factor

is controlled in the analysis. Many epidemiologists prefer to

make a decision based on the latter criterion, although this

approach can be misleading, particularly if there is misclassi-

fication of exposure.35 The decision to control for a presumed

confounder can certainly be made with more confidence if

there is supporting prior knowledge that the factor is predictive

of disease, independently of its association with exposure.

Most occupations involve exposure to more than one

potential risk factor, and the possibility of confounding by

other occupational exposures must be considered. For example,

foundry environments can entail exposures to metal dusts and

fumes, silica, carbon monoxide, polycyclic aromatic hydrocar-

bons, and formaldehyde, as well as to heat, noise and vibration.

However, controlling for multiple exposures may be difficult

when they are highly correlated, making it problematic to

separate their effects. A practical approach to address mutual

confounding from multiple agents is to consider a priori the

factors most likely to be associated with the health outcome of

interest, and to limit the analysis to the particular subset of

relevant agents. The subset of agents can vary with health

outcome. For example, in an analysis of lung cancer in foundry

workers, the analysis of exposures might be limited to metal

dusts and fumes, silica, polycyclic aromatic hydrocarbons, and

formaldehyde, whereas carbon monoxide, heat and noise might

be selected in an analysis of ischaemic heart disease.

An important advantage of studying occupational cohorts is

that one can often gather both exposure and health data by

using existing databases, without recourse to individual

Table 3 Lung cancer mortality in a cohort of chemical workers exposed to TCDD

Study group
Observed
cases

Not adjusted for smoking Adjusted for smoking*

Exp� SMR 95% CI Exp SMR 95% CI

Full cohort 89 80.1 1.11 0.89 to 1.37 84.8 1.05 0.85 to 1.30
High exposure
cohort`

40 28.8 1.39 0.99 to 1.89 29.2 1.37 0.98 to 1.87

Source: Fingerhut et al.47

*Adjusted using smoking data for a subset of the study population (see text).
�Expected number of lung cancer deaths.
`Subcohort with .20 years since first employment and .1 year of exposure.
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participant interviews or questionnaires. A major limitation of

this approach, however, is that often there is no information

about potential confounding from individual habits and

behaviours, as well as previous occupational exposures.

However, the relatively homogenous nature of many working

populations, at least for internal comparisons of exposed and

non-exposed workers within a particular workforce, means that

uncontrolled ‘‘lifestyle’’ confounding is likely to be small.36 37

When one lacks data on a suspected confounder, and thus

cannot control confounding directly, it is still desirable to assess

the likely direction and magnitude of the confounding. For

example, it may be possible to obtain information on a

surrogate for the confounder of interest. For example, social

class is associated with many lifestyle factors such as smoking,

and may therefore be a useful surrogate for some lifestyle-

related confounders).38 Such analyses should be conducted

with caution however, as crudely constructed social class

measures may be poor surrogates for lifestyle factors.

Industrial cohorts typically are fairly uniform in social class,

at least within the broad ‘‘blue-collar’’ and ‘‘white-collar’’

segments. Consequently, social class may not have strong

explanatory power when studying disease risk within a

homogenous segment of the workforce. However, even though

confounder control will be imperfect in this situation, it is still

possible to examine whether the exposure effect estimate

changes when the surrogate is controlled in the analysis, and to

assess the strength and direction of the change. For example, if

the relative risk actually increases (for example, from 2.0 to 2.3)

or remains stable (at 2.0) when social class is controlled for,

then it is unlikely that the observed excess risk is due to

smoking, because social class is correlated with smoking,38 and

control for social class involves partial control for smoking.

Even if it is not possible to obtain confounder information for

any study participants, it may still be possible to estimate how

strong confounding is likely to be from particular risk factors.

This is often done in occupational studies, where tobacco

smoking is a potential confounder, but smoking information is

rarely available; in fact, although smoking is the strongest risk

factor for lung cancer, with relative risks of 10 or 20 times, it

appears that smoking rarely exerts a confounding effect of

greater than about 1.5 times in studies of occupational

disease,36 39 40 although this degree of confounding may still

be important in some contexts.

When detailed individual risk factor information is not

available on a potential confounder, it may be possible to assess

the impact of this factor on risk estimates by conducting a type

of sensitivity analysis that estimates the potential direction and

extent of confounding.19 20 39–46 In this sensitivity analysis

(sometimes called indirect adjustment), the magnitude of the

effect of the potential confounder on the disease should be

known with some confidence, and the prevalence of the

potential confounder among the exposed and comparison

groups should be estimable, within reasonable bounds. Then,

a range of confounding effects, including a ‘‘worst case

scenario’’, can be calculated.39 41 43 46

This type of sensitivity analysis can also be useful in certain

situations in which confounder information has been collected

for a subset of study participants. For example, Fingerhut and

colleagues47 studied cancer risks in a cohort of chemical

workers exposed to dioxin. Mortality from lung cancer was

found to be elevated in a cohort of 5172 workers at 12 US

chemical plants which were contaminated with 2.3.7,8-tetra-

chlorodibenzodioxin (TCDD). The investigators conducted an

SMR study, comparing the observed cancer mortality to that

expected in the US standard population. The investigators had

smoking information from only about 4% of the cohort, at just

one point in time. With such limited data, direct control for

smoking was not feasible. Instead, the investigators used the

reported smoking prevalence from this sample to adjust the

expected numbers of lung cancers, and then recalculated the

SMRs (table 3). Because the cohort sample reported a higher

smoking prevalence than in the US population overall, the

effect was to slightly increase the expected number of lung

cancer deaths and decrease the SMRs. Such limited informa-

tion, if taken in all exposure-disease subgroups, can also be

used to control confounding directly in a two-stage analy-

sis.15 20 48 49

SUMMARY
The design of occupational epidemiology studies should

incorporate strategies to minimise systematic error (selection

bias, information bias and confounding). Selection bias can be

minimised by obtaining a high response rate (in case-control

studies we would also require that the controls be selected from

the population generating the cases). Information should be

collected in a standardised manner to help ensure that

misclassification will be non-differential. In this situation, if

it is independent of other errors, exposure and disease

misclassification, if independent, will tend to produce false

negative findings and will thus be of greatest concern in studies

which have not found an important effect of exposure. Thus, in

general, it is important to ensure that information bias is non-

differential and, within this constraint, to keep it as small as

possible. The potential for confounding by unmeasured risk

factors is of concern in any epidemiological study. The task is

therefore to minimise confounding in the study design, and to

control for it in the analysis. Strong associations between

workplace conditions and health outcomes are seldom attribu-

table solely to uncontrolled confounding. However, confound-

Main messages

c The design of occupational epidemiology studies should be
based on the need to minimise random and systematic
error.

c In general, it is important to ensure that information bias is
minimised and is also non-differential (for example, that the
misclassification of exposure is not related to disease status)
by collecting data in a standardised manner.

c A major concern in occupational epidemiology studies
usually relates to confounding, because exposure has not
been randomly allocated, and the groups under study may
therefore have different baseline disease risks.

c For each of these types of bias, the goal should be to avoid
the bias by appropriate study design and/or appropriate
control in the analysis.

c However, it is also important to attempt to assess the likely
direction and strength of biases that cannot be avoided or
controlled.
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ing can be an important bias in studies where occupational risk

factors have relatively modest or weak effects.50

For each of these types of bias, the goal should be to avoid the

bias by appropriate study design and/or appropriate control in

the analysis. However, reducing one type of bias may increase

another type. For example, the use of an expensive biomarker

involving a blood test may reduce misclassification of exposure

but may increase random error by reducing study size (because

of the cost of the biomarker), and may also increase selection

bias (if non-response is greater because of the need for a blood

test). Thus, study design always involves a compromise

between these competing goals, and there is always the need

to assess the likely direction and strength of biases that cannot

be avoided or controlled.
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